Why compilers have failed
and
What we can do about it

Keshav Pingali
The University of Texas at Austin
LCPC Keynote
October 7th, 2010

Organization

3 major accomplishments of compilers in
the past 25 years

3 lessons from the failures of compilers Iin
the past 25 years

2 lessons from the Galois project
1 challenge for the LCPC community

Accomplishments of past 25 years(l)

 Instruction-level parallelism (ILP)

— Resources: processor pipeline
e Functional units
* Regqisters
— Optimization scope:
» Basic blocks (Hardware:IBM Stretch)
 |Instruction sequences: trace scheduling (Josh Fisher)
* Innermost loops: software pipelining (Bob Rau)
» Loops with conditionals (Bob Rau)
 DAGS: super-blocks, hyper-blocks (Wen-Mei Hwu)
— Key ideas:
« Speculation: it’s all about probabilities
 Profile-driven optimization
« Dynamic branch prediction

o

Accomplishments of past 25 years (ll)

 Memory-hierarchy optimization
— Resources:
» Caches and registers
» Functional units
— Optimization scope:
» Perfectly nested DO-loops + dense arrays
* Imperfectly nested DO-loops + dense arra,
— Key ideas:
* Loop transformations:

— UIUC (Kuck, Padua,..), Rice (Kennedy,Cooper,..), IBM (Fran Allen,
Sarkar,..)

* Program abstractions:
— polyhedral methods (French school: Feautrier et al)

ltanium MMM (—03)

factor faster than -O2

30

25

20

15

10

GFLOPS relative to -O2; bigger is better

92% of Peak
Performance

From Wei Li (Intel)

Accomplishments of past 25 years (lll)

« Performance portability

— Java: Gosling
* byte-code interpretation +
* just-in-time (JIT) compilation
— FFTW,SPIRAL.: Frigo,Johnson

e codelets +
e empirical search

— ATLAS: Dongarra et al.

e parameterized program +
e empirical search

Bad news: we failed on the big one

o Auto-parallelization

— Some success with vectorization of dense matrix
programs

— Complete failure otherwise
e Dusty-deck rejuvenation
— Complete failure

Other communities

 Although we have failed

with parallelism, other

communities have B e

succeeded =

— Databases: (Codd) e
" SRL TT

— Numerical linear algebra:
(Dongarra, Demmel,

Gropp,...)
» ScaLAPACK, PetSc, etc.

Organization

3 major accomplishments of compilers in
the past 25 years

3 lessons from the failure of auto-
parallelization

2 lessons from the Galois project
1 challenge for the LCPC community

Lesson 1 -

Compilers

— Good at lowering abstraction level of program
e conventional code generation from HLL programs
* |ILP exploitation

— Bad at raising abstraction level
» dusty-deck rejuvenation
» auto-parallelization

Lesson

— Solution to auto-parallelization problem must not require compiler to
raise abstraction level to uncover high level structure

— Examples: databases, NA, FFTW
Wrong question:

— Can dusty-deck program written in FORTRAN or C be parallelized?
Right question:

— Given the state of the art of program analysis and runtime systems, can
we invent

 sequential descriptions of algorithms + minimal amount of explicitly parallel
code/annotations/directives such that

 performance of the resulting program ~ performance of explicitly parallel program for
the same algorithm?

¥ .-"._I'L/g
yowchuan@meshio.cdm

Lesson 2

Domains that have harnessed parallelism successfully have at
least two distinct classes of programmers
— Databases:

* SQL programmers: Joe programmers
 DBMS implementers: Stephanie programmers

— Numerical linear algebra:
« MATLAB users: Joe programmers
* LAPACK implementers: Stephanie programmers
* BLAS implementers: Kazushige Goto programmer

Strategy
— Small number of Stephanies to support large number of Joes
— Software contract between Joes and Stephanies

Lesson:
— Multicore programs and programmers will not be monolithic

— Languages and tools for Joe may be very different from those for
Stephanie or Goto

— Need to figure out levels and software contracts between levels

Lesson 3

Software contract between layers is more than an API

Ontology or information model

— Formal representation of entities that includes
» properties of entities
» relationships between entities
e Operations on entities
» properties of operations

Ontology examples ,
— Computational algebras: (eg) Relational algebra in databases
— BLAS interface in dense linear algebra
— Machine language

Motivation

— Permits program at a given abstraction level to be optimized without
knowledge of how lower layers are implemented (Kennedy:
telescoping languages)

— Permits application-specific selection of how lower layers are
iImplemented

— Portability: decompose program into codelets which are optimized
for each architecture

Archetypal system that uses all 3 lessons

Relational databases: Codd’s 12 rules

 Rule 8: Physical data independence

— The user should not be aware of where or upon
which media data-files are stored.

 Rule 9: Logical data independence

— User programs and the user should not be aware |, 4.
of any changes to the structure of the tables such ‘
as the addition of additional columns. '

 Rule 11: Distribution independence

— The RDBMS may be distributed across more than | 3
one system and across several networks, but to the .
end-user, the tables should appear no different)

Y ™
than those that are local. \3‘; a

T

Contrast:general-purpose PL

* Monolithic view of programs
— program are big, complex monoliths
— optimized by other big, complex monoliths called compilers
— optimization is “whole-program”
* No clear delineation of roles between
— different classes of programmers
— programmers and compilers
e Languages permit optimization by programmers and by compilers

— no distinction between
« abstraction and implementation: implicit array reshaping in FORTRAN
» data and meta-data: pointers in C, representation exposure in OO
languages
=> Everyone and every system involved in the programming process is
responsible for everything and nothing.

Organization

3 major accomplishments of compilers in
the past 25 years

3 lessons from the failure of auto-
parallelization

2 lessons from the Galois project
1 challenge for the LCPC community

Lesson 4

Static dependence graphs are not useful
abstractions for many algorithms
— In many algorithms, dependences are
functions of runtime values
For these algorithms, compile-time
parallelization and scheduling is not
possible
— Much if not most of the work for
parallelization must be done at runtime
* Inspector-executor approach

* Interference graph approach
» Speculative or optimistic execution

Lesson:

— auto-parallelization cannot mean just
compile-time parallelization

— must take a broader view of auto-
parallelization in terms of binding time of
scheduling decisions

Before

After

Delaunay mesh refinement

Binding time of scheduling decisions

 Analogies:
— Type checking
« Compile-time: languages like Java
* Runtime: languages like MATLAB and Python
— Number of times a loop executes
« Compile-time: “DO I = 1, 100"
e Just-in-time: “DO I =1, N”
* Runtime: “while (true) do”
o Parallelization: when do we know dependences?
— Compile-time: dense matrix codes, FFT, stencils,..
— Just-in-time (inspector-executor): sparse MVM, tree walks
— Runtime: irregular codes like DMR, event-driven simulation
e Lesson:

— auto-parallelization requires fusion of compiler and runtime
systems

Lesson 5

e Don’t-care non-determinism Is
Important for parallel
performance

e Cannot be inferred by compiler
analysis of programs Before

 Need language constructs to
let programmer specify don’t-
care non-determinism
wherever it is legal
— Galois set iterator

After

Organization

3 major accomplishments of compilers in
the past 25 years

3 lessons from the failure of auto-
parallelization

2 lessons from the Galois project
1 challenge for the LCPC community

Challenge for LCPC
community

Build a general-purpose
auto-parallelization system

for a 1K-core processor

First cut: Galois system

Operator formulation of algorithms

» Algorithm = repeated application of
operator to graph

— active element:
* node or edge where computation is needed
— neighborhood:

» set of nodes and edges read/written to
perform activity

 distinct usually from neighbors in graph
— ordering:

e order in which active elements must be executed
in a sequential implementation

— any order .
— problem-dependent order ® \:\;’:ﬁ:‘fl‘\‘/‘éhﬁdé"/,
« Amorphous data-parallelism
. neighborhood

— parallel execution of activities, subject to
neighborhood and ordering constraints

21

Galois programming model (PLDI 2007)

Layered architecture

Joe programmers
— sequential, OO model
— Galois set iterators: for iterating over unordered and
ordered sets of active elements

o foreachein SetS do B(e)
— evaluate B(e) for each elementin set S
— no a priori order on iterations
— set S may get new elements during execution

» for each e in OrderedSet S do B(e)
— evaluate B(e) for each elementin set S
— perform iterations in order specified by OrderedSet
— set S may get new elements during execution

Stephanie programmers
— Galois concurrent data structure library

(Wirth) Algorithms + Data structures = Programs
(cf) SQL and database programming

22

Galois parallel execution model

Parallel execution model;
— shared-memory

— optimistic execution of Galois
iterators

Implementation:

of program

when it encounters iterator,

worker threads help by executing
iterations concurrently

main()
— master thread begins execution

barrier synchronization at end of
iterator

Independence of neighborhoods:
— software TLS/TM variety
— logical locks on nodes and edges

Master

Ordering constraints for ordered set
iterator:

execute iterations out of order
but commit in order

cf. out-of-order CPUs

Joe Program

23

Concurrent
Data structure

ParaMeter Parallelism Profiles

(PPoPP 2009)

« DMR: input mesh .

— Produced by Triangle ‘
(Shewchuck)

— 550K triangles

— Roughly half are badly .
shaped

ISm

30000 f=

20000

10000 f=

Available Parallel

=
I L

« Available parallelism: 2 0

— How many non-conflicting Computation Step
triangles can be expanded 100

L]

at each time step?

o Parallelism intensity:

— What fraction of the total
number of bad triangles
can be expanded at each
step?

E [=p] o]
= =
L L L L

Parallelism Intensity
=
T I LI]

=
T 1
(==

20 40
Computation Step

Algorithm abstractions

general graph
topology grid

tree
refinement
morph coarsening
general
: topology-driven
irregular operator local computation<
algorithms :
data-driven
reader
unordered

ordering<
ordered

Jacobi: topology: grid, operator: local computation, ordering: unordered
DMR, graph reduction: topology: graph, operator. morph, ordering: unordered
Event-driven simulation: topology: graph, operator: local computation, ordering: ordered

25

Throughput (it/ms)

N

o

o
|

w

o

o
l

N

o

o
|

—

o

o
|

DMR Results

[B B
2 3 4 5

Threads

I
/7 8

26

kind

—o— base

—4— base.flagopt
—=— |ocallifo

—+— locallifo.flagopt

Problem size: 0.5M triangles, 0.25M bad triangles
Machine: Intel Nehalem, 2 Quad-core processors

Serial time: 17002 ms
Best // time: 3745 ms
Best speedup: 4.5X

Barnes-Hut

Optimization
— static parallelization of particle-
pushing
* 90+ % of execution time

— Galois runtime system but
conflict-checking is turned off

SPLASH-2 C implementation:

* same scaling
» roughly twice as fast (Java vs. C)

Shows that static parallelization
can be viewed as early-binding
of scheduling decisions

16

12

&

1z

-e-100,000 Dodies

—id=al !

10,000 bodl=s

-&-200,000 bodles
J“_I_,“
#

o

T T T T T T T
1] 2 4 & E 10 12 14 1€

Threads

Sun Niagara-2

_| =&-Z00,000 bodlas

—Ildeal

-0~ 100,000 bodles
=-10,000 bodies

i

T T T T T T T
i} 2 4 & 8 10 12 14 16

Threads

Nehalem

Andersen-style points-to analysis

« Algorithm formulation

— solution to system of set
constraints

— 3 graph rewrite rules

— speedup algorithm by
collapsing cycles in
constraint graph

State of the art C++
Implementation

— Hardekopf & Lin

— red lines in graphs
“Parallel Andersen-style

points-to analysis” Mendez-
Lojo et al (OOPSLA 2010)

time (sec.)

time (sec.)

25.00

20.00 A

15.00

10.00

5.00

0.00

25.00

20.00

15.00

10.00

5.00

0.00

gimp

Rising to the challenge

Need an LCPC community-wide effort
— too big for any one group
Shared infrastructure

Create a framework to identify and collect winning
ideas for standardization and adoption

Measuring progress
Benchmarks and data-sets

Change our research methodology

— study algorithms and data structures, not just run
benchmarks no one understands

— reward carefully performed case studies of important
kernels and applications

Patron saint of parallel programming

“Pessimism of the intellect, optimism of the will”
Antonio Gramsci (1891-1937)

