
Why compilers have failedWhy compilers have failed
and

What we can do about it

Keshav Pingali
The University of Texas at AustinThe University of Texas at Austin

LCPC Keynote
October 7th, 2010

OrganizationOrganization

• 3 major accomplishments of compilers in3 major accomplishments of compilers in
the past 25 years

• 3 lessons from the failures of compilers in• 3 lessons from the failures of compilers in
the past 25 years
2 l f th G l i j t• 2 lessons from the Galois project

• 1 challenge for the LCPC community

Accomplishments of past 25 years(I)p p y ()

• Instruction-level parallelism (ILP)
– Resources: processor pipeline

• Functional units
• Registers

– Optimization scope:
• Basic blocks (Hardware:IBM Stretch)
• Instruction sequences: trace scheduling (Josh Fisher)

I t l ft i li i (B b R)• Innermost loops: software pipelining (Bob Rau)
• Loops with conditionals (Bob Rau)
• DAGs: super-blocks, hyper-blocks (Wen-Mei Hwu)

Key ideas:– Key ideas:
• Speculation: it’s all about probabilities
• Profile-driven optimization
• Dynamic branch predictionDynamic branch prediction

Accomplishments of past 25 years (II)

• Memory-hierarchy optimization
R– Resources:

• Caches and registers
• Functional units

O ti i ti– Optimization scope:
• Perfectly nested DO-loops + dense arrays
• Imperfectly nested DO-loops + dense arrays

K id– Key ideas:
• Loop transformations:

– UIUC (Kuck, Padua,..), Rice (Kennedy,Cooper,..), IBM (Fran Allen,
Sarkar,..)Sarkar,..)

• Program abstractions:
– polyhedral methods (French school: Feautrier et al)

Itanium MMM (–O3)

GFLOPS relative to -O2; bigger is better

92% of Peak

20

25

30

ha
n

-O
2

92% of Peak
Performance

10

15

ct
or

 fa
st

er
 th

0

5

-O
1

-O
2

efe
tch

ha
ng

e

ll-j
am = -
O3

cc
 -O

4

fa
c

+ p
ref

+ i
nte

rch
a

+ u
nro

ll j
+ b

loc
kin

g = gc
c

From Wei Li (Intel)

Accomplishments of past 25 years (III)Accomplishments of past 25 years (III)

• Performance portabilityPerformance portability
– Java: Gosling

• byte-code interpretation +
• just-in-time (JIT) compilationjust in time (JIT) compilation

– FFTW,SPIRAL: Frigo,Johnson
• codelets +
• empirical searchempirical search

– ATLAS: Dongarra et al.
• parameterized program +
• empirical searchempirical search

Bad news: we failed on the big one

• Auto-parallelization
– Some success with vectorization of dense matrix

programs
– Complete failure otherwisep

• Dusty-deck rejuvenation
– Complete failure

Other communities

• Although we have failed g
with parallelism, other
communities have

d dsucceeded
– Databases: (Codd)

SQL• SQL
– Numerical linear algebra:

(Dongarra Demmel(Dongarra, Demmel,
Gropp,…)

• ScaLAPACK, PetSc, etc.

OrganizationOrganization

• 3 major accomplishments of compilers in3 major accomplishments of compilers in
the past 25 years

• 3 lessons from the failure of auto• 3 lessons from the failure of auto-
parallelization
2 l f th G l i j t• 2 lessons from the Galois project

• 1 challenge for the LCPC community

Lesson 1
C il• Compilers
– Good at lowering abstraction level of program

• conventional code generation from HLL programs
• ILP exploitation

– Bad at raising abstraction level
• dusty-deck rejuvenation
• auto-parallelization

• Lesson
– Solution to auto-parallelization problem must not require compiler to

raise abstraction level to uncover high level structure
– Examples: databases, NA, FFTW

• Wrong question:• Wrong question:
– Can dusty-deck program written in FORTRAN or C be parallelized?

• Right question:
– Given the state of the art of program analysis and runtime systems, can

we invent
• sequential descriptions of algorithms + minimal amount of explicitly parallel

code/annotations/directives such that
• performance of the resulting program ' performance of explicitly parallel program for

the same algorithm? g

Lesson 2
• Domains that have harnessed parallelism successfully have at

least two distinct classes of programmers
D t b– Databases:

• SQL programmers: Joe programmers
• DBMS implementers: Stephanie programmers

– Numerical linear algebra:
• MATLAB users: Joe programmersp g
• LAPACK implementers: Stephanie programmers
• BLAS implementers: Kazushige Goto programmer

• Strategy
Small number of Stephanies to support large number of Joes– Small number of Stephanies to support large number of Joes

– Software contract between Joes and Stephanies

• Lesson:
– Multicore programs and programmers will not be monolithicMulticore programs and programmers will not be monolithic
– Languages and tools for Joe may be very different from those for

Stephanie or Goto
– Need to figure out levels and software contracts between levels

Lesson 3
• Software contract between layers is more than an API
• Ontology or information model

– Formal representation of entities that includes
• properties of entities
• relationships between entities
• operations on entities
• properties of operations• properties of operations

• Ontology examples
– Computational algebras: (eg) Relational algebra in databases
– BLAS interface in dense linear algebra

M hi l– Machine language
• Motivation

– Permits program at a given abstraction level to be optimized without
knowledge of how lower layers are implemented (Kennedy:
t l i l)telescoping languages)

– Permits application-specific selection of how lower layers are
implemented

– Portability: decompose program into codelets which are optimized
for each architecturefor each architecture

Archetypal system that uses all 3 lessons

Relational databases: Codd’s 12 rules

• Rule 8: Physical data independence
– The user should not be aware of where or upon– The user should not be aware of where or upon

which media data-files are stored.

• Rule 9: Logical data independence
– User programs and the user should not be aware

of any changes to the structure of the tables such
as the addition of additional columns.

• Rule 11: Distribution independence
– The RDBMS may be distributed across more than

one system and across several networks, but to the y
end-user, the tables should appear no different
than those that are local.

Contrast:general-purpose PLContrast:general purpose PL

• Monolithic view of programs
– program are big, complex monoliths

ti i d b th bi l lith ll d il– optimized by other big, complex monoliths called compilers
– optimization is “whole-program”

• No clear delineation of roles between
– different classes of programmersdifferent classes of programmers
– programmers and compilers

• Languages permit optimization by programmers and by compilers
– no distinction between

b t ti d i l t ti i li it h i i FORTRAN• abstraction and implementation: implicit array reshaping in FORTRAN
• data and meta-data: pointers in C, representation exposure in OO

languages
Everyone and every system involved in the programming process is
responsible for everything and nothingresponsible for everything and nothing.

OrganizationOrganization

• 3 major accomplishments of compilers in3 major accomplishments of compilers in
the past 25 years

• 3 lessons from the failure of auto• 3 lessons from the failure of auto-
parallelization
2 l f th G l i j t• 2 lessons from the Galois project

• 1 challenge for the LCPC community

Lesson 4
• Static dependence graphs are not useful

abstractions for many algorithms
– In many algorithms, dependences are

functions of runtime values
• For these algorithms, compile-time

parallelization and scheduling is not
iblpossible

– Much if not most of the work for
parallelization must be done at runtime

• Inspector-executor approach
I t f h h• Interference graph approach

• Speculative or optimistic execution
• Lesson:

– auto-parallelization cannot mean just
compile time parallelizationcompile-time parallelization

– must take a broader view of auto-
parallelization in terms of binding time of
scheduling decisions

Delaunay mesh refinement

Binding time of scheduling decisionsBinding time of scheduling decisions

• Analogies:
– Type checking

• Compile-time: languages like Java
• Runtime: languages like MATLAB and Python

– Number of times a loop executesNumber of times a loop executes
• Compile-time: “DO I = 1, 100”
• Just-in-time: “DO I = 1, N”
• Runtime: “while (true) do”

P ll li ti h d k d d ?• Parallelization: when do we know dependences?
– Compile-time: dense matrix codes, FFT, stencils,..
– Just-in-time (inspector-executor): sparse MVM, tree walks

Runtime: irregular codes like DMR event driven simulation– Runtime: irregular codes like DMR, event-driven simulation
• Lesson:

– auto-parallelization requires fusion of compiler and runtime
systemssystems

Lesson 5

• Don’t-care non-determinism is
important for parallel
performance
C t b i f d b il• Cannot be inferred by compiler
analysis of programs

• Need language constructs toNeed language constructs to
let programmer specify don’t-
care non-determinism
wherever it is legalwherever it is legal
– Galois set iterator

OrganizationOrganization

• 3 major accomplishments of compilers in3 major accomplishments of compilers in
the past 25 years

• 3 lessons from the failure of auto• 3 lessons from the failure of auto-
parallelization
2 l f th G l i j t• 2 lessons from the Galois project

• 1 challenge for the LCPC community

Challenge for LCPC g
community

Build a general-purpose
auto-parallelization system

for a 1K-core processor

First cut: Galois system

Operator formulation of algorithms
• Algorithm = repeated application of

operator to graph
– active element: i1

i3
active element:

• node or edge where computation is needed
– neighborhood:

• set of nodes and edges read/written to
perform activity

i1

i2
perform activity

• distinct usually from neighbors in graph
– ordering:

• order in which active elements must be executed
i ti l i l t ti

i4
in a sequential implementation

– any order
– problem-dependent order

• Amorphous data-parallelism

i5
: active node

: neighborhood
– parallel execution of activities, subject to

neighborhood and ordering constraints

: neighborhood

21

Galois programming model (PLDI 2007)

• Layered architecture
• Joe programmersJoe programmers

– sequential, OO model
– Galois set iterators: for iterating over unordered and

ordered sets of active elements
• for each e in Set S do B(e)

– evaluate B(e) for each element in set S
– no a priori order on iterations
– set S may get new elements during execution

• for each e in OrderedSet S do B(e)
– evaluate B(e) for each element in set S

f it ti i d ifi d b O d dS t– perform iterations in order specified by OrderedSet
– set S may get new elements during execution

• Stephanie programmers
– Galois concurrent data structure library Ga o s co cu e da a s uc u e b a y

• (Wirth) Algorithms + Data structures = Programs
• (cf) SQL and database programming

22

Galois parallel execution model

main()
Master

Parallel execution model:
– shared-memory
– optimistic execution of Galois

iterators main()
….
for each …..{
…….

iterators
Implementation:

– master thread begins execution
of program

– when it encounters iterator,
i1

i3

…….
}
.....

,
worker threads help by executing
iterations concurrently

– barrier synchronization at end of
iterator

Independence of neighborhoods

i2
i4

C t

Independence of neighborhoods:
– software TLS/TM variety
– logical locks on nodes and edges

Ordering constraints for ordered set
iterator:

i5

Concurrent
Data structure

Joe Programiterator:
– execute iterations out of order

but commit in order
– cf. out-of-order CPUs

23

ParaMeter Parallelism Profiles
(PPoPP 2009)(PPoPP 2009)

• DMR: input meshp
– Produced by Triangle

(Shewchuck)
– 550K triangles

R hl h lf b dl– Roughly half are badly
shaped

• Available parallelism:
How many non conflicting– How many non-conflicting
triangles can be expanded
at each time step?

• Parallelism intensity:y
– What fraction of the total

number of bad triangles
can be expanded at each
step?

24

step?

Algorithm abstractions
general graph

topology
general graph
grid
tree

morph
refinement
coarsening
general

irregular
algorithms

operator local computation
topology-driven

data-driven

reader

unordered
ordering

unordered

ordered

Jacobi: topology: grid, operator: local computation, ordering: unordered
DMR h d ti t l h t h d i d d

25

DMR, graph reduction: topology: graph, operator: morph, ordering: unordered
Event-driven simulation: topology: graph, operator: local computation, ordering: ordered

DMR ResultsDMR Results

Problem size: 0.5M triangles, 0.25M bad triangles
Machine: Intel Nehalem, 2 Quad-core processors

Serial time: 17002 ms
Best // time: 3745 ms
Best speedup: 4.5X

26

Barnes-Hut

• Optimization
– static parallelization of particle-

pushingpushing
• 90+ % of execution time

– Galois runtime system but
conflict-checking is turned off

SPLASH 2 C i l t ti• SPLASH-2 C implementation:
• same scaling
• roughly twice as fast (Java vs. C)

• Shows that static parallelization Sun Niagara-2Shows that static parallelization
can be viewed as early-binding
of scheduling decisions

Nehalem

Andersen-style points-to analysis

• Algorithm formulation
– solution to system of set

constraints
– 3 graph rewrite rules

speedup algorithm by– speedup algorithm by
collapsing cycles in
constraint graph

• State of the art C++
i l t tiimplementation
– Hardekopf & Lin
– red lines in graphs

“P ll l A d t l• “Parallel Andersen-style
points-to analysis” Mendez-
Lojo et al (OOPSLA 2010)

Rising to the challengeRising to the challenge
• Need an LCPC community-wide efforty

– too big for any one group
• Shared infrastructure
• Create a framework to identify and collect winning• Create a framework to identify and collect winning

ideas for standardization and adoption
• Measuring progress
• Benchmarks and data-sets
• Change our research methodology

study algorithms and data structures not just run– study algorithms and data structures, not just run
benchmarks no one understands

– reward carefully performed case studies of important
kernels and applicationskernels and applications

Patron saint of parallel programming

“Pessimism of the intellect, optimism of the will”Pessimism of the intellect, optimism of the will
Antonio Gramsci (1891-1937)

